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ANNQTATION

A signal model is introduced with the help of a set of possible
correlation (spectral) functions. Recovery of the shape of a
continuous signal from discrete readings with the help of linear
filtering is considered. The criterion for accuracy is the mean-
square error in recovering the slgnal shape between readings.

Linear filters with finite memory (recovery funections) of increasing
complexity and the optimal linear filter, which 1s physically
unrealizable, are consldered. Calculations of the recovery errors
are carried out for various reading frequencies (number of points
per correlation interval) and varlous recovery functions. Tables
and graphs are presented, which permit a comparison of the errors,
evaluation of the sultability of ilncreasing the complexity of the

filter, and selection of the filter form.
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RECOVERY OF ANALOG SIGNAL SHAFES FROM DISCRETE READINGS
V.P. Yevdokimov and L.I. Kolesnikov

1. STATEMENT OF THE PROBLEM

In communication transmission by systems with time division
of channels, continuous signals undergo time discretization. The
produced regular discrete sequence of readings permits recovery
of the shape of the transmitted signal at the point of reception
with some error, which depends on the reading frequency, the
shape and width of the signal spectrum, and the recovery method.
It will be assumed 1n the analysis below that transmltter noise
and distortion in the transmission channel are small and can be

neglected.

We note the magniftude of the recovery error at each moment

of time:

Et)=x(¢) - Xy(t). ;
where x(t) is the actual signal, Xr(t) is the recovered signal.

Criteria for evaluafting the difference in the shapes of the

actual and recovered signals can differ:

1} the mean-square errcor in recovering the shape at any

point between the discrete readings;

¥ Numbers in margin indicate paglnation in original foreign text.
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2) the probability that for some point between the readings

the recovery error does not exceed a given value.

The following basic problems were solved in the work: /4
1) calculation of the recovery error in the signal shape with
various correlation functions with changes in the reading frequency

and the weighting functlon of the recovery fllter;

2) comparison of the results of the caleulation to produce
recommendations for the selection of a method flor signal recovery,
i.e. an evaluation of the suitability of complicating the recovery

filter to decrease error.

The caleculation in the work was carried out with the first

criterion.
2. SIGNAL MODELS AND SHAPE RECOVERY METHODS

We consider signals, which are steady-state random processes

with given correlation (spectral) functions. It 1s suitable to
select for these signals a single parameter ensuring the possibility
of comparing the results with changes in the reading frequency.
As such a parameter, we will use the process correlation interval,
which we define as Tc = l/EFe, where Fe is the effective width of
the signal spectrum. We define the generallzed readlng frequency
equaling the ratio of the reading frequency to twice the effective
spectral width and indicating the number of points read in the

process correlation interval:

0
f = 2——:
e O

l—]ll—Il
[}

We consider random processes having the following correlation

functions as power spectra as signal models:
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1) white nolse transmitted through a single RC filter: /5

ﬁ(‘l’/?ﬁzf-mn’ 5(!4}) a(fj:ﬁ’ o(“#Fe/;}

2) white noise transmitted through two identical RC filters

connected in series:

R(2)- 61 seliey) ™ S(e) 4, ot - 8F; |

3) white noise transmitted through three RC fllters in series:

. 2l it 5ol * |
ﬁ(‘[’):ﬁ[f{-g{/’t/\" je ”5( )J{a(ﬁuf)j é(h e};

4} white noise transmitted through a filter with a gaussian
frequency characteristic (the limit of a large number of RC filters

conhected in series):

;a(r);'b%*g*’-_‘?: .s(w) \/—"e i a(=4ir@f:

5) white nolse transmitted through a filter with a rectangular
frequency characteristic with a cutoff frequency F = Fe:

1 zSLHErFf J
R(t)= 6" =57 g

We will assume that the recovery of the signal shape from the
dlscrete readings is accomplished by a linear interpolation filter

with finite memory, whose weighting function equals W(t):
§

Zu(e) =} x(mT)W(mT, &),

mpa-Nry O

where m 1s the number of interpolation points, M = 2N is the total /6
number of inferpclation points, TO is the time between readings,
e 1s the fraction of the time interval between readings, os=é&é={/.



We consider the following methods for signal recovery between

Neighboring readings:
1. Stepwlse recovery:

a) without shift — the horizontal line of the estimate

is drawn to the right from each sample for the time TO;

b) with a shift by TO/2 — the horizontal line of the
estimate is drawn to the right and left from each sample for the
time TO/2;

2. Plecewise linear recovery by connecting nelghboring

readings with straight lines.
3. Recovery by a finite set of functions of the form sin x/x.

4. Optimal linear recovery by a physically unrealizable
filter which is used to recover an infinite number of readings on

both sides of the interpolation interval.
3. MEAN-SQUARE RECOVERY ERRCR CRITERION

The mean-square error in recovering the shape for each moment
of time between readings can be calculated from the following
formula [1]:

E*(€)= R(o) -2 fjﬁ[{h—sﬂ;]w[(m—a) To]*

- f

fi EH R[fm-f}t]h/ﬁm&)x]h/[({' &) 7;],

C manepef fronst

where m, 1 are the number of interpclation points considered for /T

the recovery.



We will ecalculate the error in percent of the scale of signal

change of 1t 36(66):
E(e)-YETSL.

The interpolation error has its maximum value at the middle
of the interval between readings for all forms of interpolation,
i.e. for £ = 0.5, except for stepwise interpolation without

shift, for which it occurs for € = 1).

The weighting functions of the recovery filters for these

recovery methods have the following form:

1) stepwise recovery (M = 1, m = 0):

W(e)=0: |

2) plecewise linear recovery (M = 2, m = 0, 1):

£ ., m=o0
bl/[(m—é)?.,—]=/!_£ , m=1/

3) recovery by the functions sin x/x (the number of points M
is a variable quantity; recovery 1s precduced by a filter matched
with the reading frequency F_ = 2Fe):

hﬂ?ﬂr£)7:]=igﬁj[£2;£i-

T(m-c)

Determination of the error with optimal linear interpolation
(averaging over all e within the interval between readings) was
carried out with the following formula obtained in [2]:

._i“frt[ 5(“")[7 T?’(w)]d ( /8



where S{w) is the energy spectrum of the process to be recovered,
?’(w)=%ZS(w-iwa); is the energy spectrum of the discrete random
process composed of the readings following with the frequency W

4, MAXIMUM RECOVERY ERROR PROBABILITY CRITERION
Use of this criterion is easier for normal random processes.

Since linear filters are used for signal shape recovery, then
the recovery error at each moment of time ¢ is a random variable
with the normal probabllity distribution and dispersion determined
by the presented formula for E??Eﬁ.

In connection with this, the probabiltiy that the error does
not exceed a given value at each point of the interval between
readings can be easily calculated with the use of normal proba-
bility distribution tables.

5. RESULTS OF THE CALCULATIONS AND CONCLUSIONS

The results of the calculation for the normalized maximum
mean-square errors in signal recovery with various correlation

functions are presented in the tables. /9

Table 1 contalns the errors in stepwise recovery. The result-
ing errors are significant for any signal model even for high
reading frequencies. Thus, the use of such a recovery method is

unsuitable.

Table 2 and Fligure 1 indicate the errors for plecewlse linear
recovery. The resulting errors are significantly smallers; the
advantage over stepwlse recovery increases with increasing

reading frequency.



With the change 1n signal spectrum from model 1 to model 5,
an ever-increasing suppression of the high-frequency "tails" occurs
in the spectrum. Thus, complication of the fllter shaping the
signal spectrum leads to decreasing errors for any readout fre-

guency.

Recovery by the functions ;ﬁnxfx{permits including a different
number of points in the interpolation process without changing
the welghting function of the filfter. The results of calculating
the errcors while changing the number of points from 20 to 200 are
presented in Table 3. The dependence of the errors on N is shown
in Figure 2. It is interestling to note that, for the first three
signal models, significantly decreasing errors are not observed
for increasing numbers of points used in the recovery at the con-
sidered reading frequencies. Since there exists a limiting nonzero
recovery error as N -+ «, then one can draw a concluslon about the
sufficiently rapid convergence of the series with the functions
sin x/x. This implies that for recovery by the functions sin x/x
it is not sultable in practice to use more than 10 - 20 interpola-
tion peints. If one considers the change in the errors with
increasing reading frequency and constant number of polnts from
Figure 3, then it will be noted that increasing the reading fre-

.
=
(@

gquency above some value leads to a constant errcor, whilch has the

|

same value independent of the'signal mcdel.,

Comparison of the piecewise linealr recovery and recovery by
the funections sin x/x can be carried out on Figure 4 and 5. The
errors for the optimal linear, piecewise linear recovery and
recovery by the functions sin x/x averaged over all values of ¢
in the interval between readings are presented in Figure 6. The
comparison indicates that it 1s not suitable to complicate the
recovery filters up to the spectral shape determined by the forming
3 x RC filter, since the use of the piecewise linear recovery

provides practically the same magnitude of the errors as the



optimal linear recovery. Only for the gaussian shape of the signal
spectrum are the errors of the optimal linear recovery smaller in
comparison with the piecewise linear recovery. The difference
increases with high reading frequencies and small errors. With
increasing accuracy requirements, such a difference in errors can
be significant. In this case recovery by the functions sin x/x
permits a significant decrease of this difference up to some
reading frequency depending on the number of interpoclation points

used.

It is interesting to note that recovery by the functions
sin x/x leads to errors practically coineldling with the errors
of the optimal linear recovery for an unknown signal model, but

belonging to the consildered class.

This also permits one to draw the conclusion about the practi-
cal unsuitability of analyzing and using the optimal linear recovery

over g finite number of interpolation points.

In practice, the small difference in errors produced by the /11
piecewise linear recovery 1n comparison to the more complicated
recovery methods leads fo the conclusion about the suitability of
the preferred use of the piecewise linear recovery of signal

between readings.
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TABLE 1. STEPWISE RECOVERY ¥

Recovery Torid] 1| 3 |10 | 20 |50 [roofaF 2% correst
without shift] 22 (1351072547333 g Eﬂ
T—With shiE;t] 1981 10 | 7,25| 5,1613,33|2,33 Q‘;E,

" without Sl:liftl 2251031 53813,1(4.3107 |y EJ_
with shift| 18,2) 5,813,171 1,6 07633 EE
hwithout éﬁift] 227 g4 5 2,61 1 |0& g E
with shift | 815 |26114,3105(026] 5 E
“without sﬁiftl 231 8 |47127|c84|lay g E’
‘with shift 174 4712.1| 1 lowasd 3|7
without shift} 236 6 | 3_11.6l06]03 S E
i snite ] digo 5 [1,6]08]g3]a%e 8| 3

TABLE 2. LINEAR RECOVERY*

I, : |
o et 1 |2 | 3|5 |10]20]50]10d
kc—{filterf ‘ 152118 (9,8 |7, 415537 12,3 {167}
-~ f.ilter‘ o e !;7,3 802 15,1712,7/4 1,09, 6,4 10, 11004
30 - £ilter| o 130416,82(3,88|1,72| 05 |074(602300 006
causs. filter| |3,07|485 |2,350,88| 6,23|0.05i govslgaues
LRe_Ct filﬁe;i:; ‘ 7,9412,22| 1,0 10370 09(00235003690008

¥ Translator's note: Commas 1in numbers represent decimal pcinfts.



TABLE 3. RECOVERY BY THE FUNCTIONS sin =x/x¥

' ‘ Form of corre
11273 S 110120 13t5on functijn\
10 |17,4]12,9(10,6 1 83 |59 | 4.2

Ed

20 1743129 11057|1 8,311 591|421 O E

50 \i745\12,9 |1069|8,35|5,92|4,22] < E

100 17,5 |12,96\10,65|8,35 |5,93| 4,23

w0 162l87 1527248108105

20 16,318,768 | 5,52|242|0%8039) % 5| |

50 #3588 15;3'5" 2,42 996|035 o

100 |1636|8,8 15,33 |2,42|096\0,3% :

5 15376953, 4 |1,36 (087} ~ o

10 |t602|7,03 | 3,4 |4, 190|042 - ,%, &
LI

20 |16,1|7.083,42/4,16 10,28|. ~ .
w0 |15,1]3,06|059|030]0381 037
20 (1515 3,5 047|0,19|048G0786
50 |15,213,6 |0450,08{6,07|0,04
100 11525\ 36 7| 043 |G036\5 0380037
10 |237\042 04 |g38|la37lg37

Gauss.
filter

20 167|021l0.2 |g19\01870,156 ; g
50 |1,05/0083(0,98 |0.08 [a0d|008 ) 8| 7
100 | Q781002 |Q04110038|6,0370,037, |

¥ Translator's note: Commas in numbers represent decimal points.
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Figure 1.
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Errors for piecewise linear recovery (P.L.)
1- RC filter; 2- 2 x RC filter; 3- 3 x RC filter;

h- rectangular filter

4- gaussian
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Figure 2. Errors for recovery by the functions sin x/x with
changing number of points (M = 2N)
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Figure 3.

filter;

0

Errors for recovery by the functions sin x/x, N = 20
1- RC filter; 2- 2 x RC filter; 3- 3 x RC filter;

h- rectangular filter

b- gaussian
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Figure 4. Comparison of recovery methods

1, 3, 4 gaussian filter; 2, 5, 6- rectangular filter; 3, 5-

N = 10; 4, 6- N = 20
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Pigure 5. Comparison of recovery methods
1- RC filter; 2- 2 x RC filter; 3- 3 x RC filter; N = 10



Figure 6. Comparison with optimal linear recovery (0.L.)
1- RC filter; &2- 3 x RC filter; 3- gaussian filter
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